Acta Cryst. (1972). B28, 2520

The Crystal and Molecular Structure of Difluoroacetamide

BY D.O. HUGHES*

Chemistry Department, The University, Keele, England

AND R.W.H.SMALL Chemistry Department, The University, Lancaster, England

(Received 28 April 1972)

The structure of difluoroacetamide has been determined from three-dimensional counter-measured data. Libration corrections have been applied to the full-matrix least-squares refined parameters. The principal interatomic distances are C-C 1.543 (7), C-F 1.361 (9) and 1.364 (9), C-N 1.334 (8), and C-O 1.247 (8) Å.

The determination of the structure of difluoroacetamide forms part of a general series of investigations on the structure and hydrogen bonding of some simple amides related to acetamide. One particular aspect is a comparison of members of the series CH_3CONH_2 , CH_2FCONH_2 , CHF_2CONH_2 and CF_3CONH_2 . The structure of monofluoroacetamide (Hughes & Small, 1962) in which the fluorine atom is almost exactly coplanar with the amide group and in *cis* conformation relative to the NH_2 group, suggested the possibility of intramolecular hydrogen bonding. It is of interest, therefore, to determine the configuration of the two fluorine atoms relative to the amide group in difluoroacetamide.

Preparation and unit cell data

Difluoroacetamide was prepared by passing anhydrous ammonia through an alcoholic solution of ethyl difluoroacetate. The excess alcohol was distilled off under vacuum and the product purified by vacuum sublimation. The melting point was 51 °C.

Whether grown by sublimation or recrystallized from solvent, crystals of difluoroacetamide grow as long needles with a marked tendency to twin. For diffraction work single crystals grown from benzene solution were sealed in Lindemann-glass tubes to avoid sublimation, which occurs rapidly at room temperature.

Weissenberg photographs taken with Cu K α radiation ($\lambda = 1.542$ Å) showed systematic absences consistent with the space group $P2_1/c$ and were used also for the measurement of approximate cell constants. More accurate values of the cell dimensions were obtained from measurements made on the diffractometer described by Small & Travers (1961) following the method of Bracher & Small (1967) to eliminate zero errors and any mis-settings of φ and χ . The results are: $a=5\cdot143\pm0\cdot005$, $b=12\cdot809\pm0\cdot002$, $c=7\cdot037\pm0\cdot004$ Å, $\beta=128\cdot3\pm0\cdot1^{\circ}$, $D_{obs}=1\cdot72$ g.cm⁻³, $D_{calc}=1\cdot735$ g.cm⁻³ for Z=4.

Intensity data

Using the diffractometer and Cu $K\alpha$ radiation, intensity data were collected out to the limit $\theta = 82 \cdot 5^{\circ}$ accessible with the instrument. Only 554 unique reflexions out of a possible 800 proved to be measurably significant, most of the absent orders were at higher θ values. Corrections for absorption and extinction effects were not made. The measured intensities were converted to structure factors with the program DATRDN of the X-RAY 63 system on the ATLAS computer at Chilton.

Determination of the structure

Many primary amide crystals are characterized by a lattice translation of approximately 5.0 Å along one of the directions of hydrogen bonding. In difluoroacetamide the *a* length of 5.143 Å and the presence of pronounced cleavage parallel to that direction suggested that the molecules were hydrogen bonded in chains parallel to a. Support for this model was given by a F^2 Fourier synthesis, computed with 0k/ data, which further indicated that most of the atoms were lying in the plane (041). An initial model, involving only carbon, nitrogen and oxygen atoms lying in this plane so as to form additional hydrogen bonds across a centre of symmetry, was used for calculating structure factors. For these and all other calculations the atomic scattering factors listed in the International Tables for X-ray Crystallography (1962) were used. An isotropic B value of 5.7 Å² was used for all atoms, obtained by the method of Wilson (1942). An F_o-F_c Fourier synthesis using 0kl terms gave a single peak which was interpreted as two overlapping fluorine atoms. Partial refinement of this projection was carried out by leastsquares calculations.

^{*} Present address: Research Department, African Explosives and Chemical Industries Ltd., P. O. Northrand, Transvaal, South Africa.

Fig. 1. Atomic numbering scheme.

Using assumed bond distances and angles and the yand z coordinates previously refined, a three dimensional model was obtained and refined using, eventually, full-matrix least squares with anisotropic temperature factors. For this purpose, the program ORFLS on the X-RAY 63 system at the ATLAS computing laboratory, Chilton, was used initially. In later cycles the program FMLS of Bracher & Taylor (1967), adapted for the Lancaster University ICL 1909 computer, was used. At an intermediate stage in the refinement, hydrogen atom positions were obtained from peaks on an F_o - F_c Fourier synthesis; these parameters together with isotropic temperature factors of 3.5 Å² were included but not refined in subsequent cycles. A weighting factor $w = \{1 + [(F_o - 10.0)/(3.0)]^2\}^{-1/2}$ was used in the later stages of refinement and an R value of 0.089eventually attained, when the least-squares shifts were less than one tenth of the estimated standard deviations.

In Tables 1 and 2 are given the final position and thermal vibration parameters, and in Table 3 the observed and calculated structure factors are listed.

Table 1. Fractional atomic coordinates and their standard deviations (in parentheses) $\times 10^5$

(See Fig. 1 for nomenclature.) z x 17780 (37) 50523 (80) 35894 (122) C(1) 29345 (75) 10113 (32) C(2) 21460 (106) 6122 (34) 20490 (76) -7514(106)N 21691 (67) 8551 (29) 0 36986 (89) 62387 (67) 24012 (111) 15598 (32) F(1) 16614 (34) 66476 (69) 68788 (90) F(2) 28100 84500 7200 H(1) 2600 8000 82000 H(2) 46000 31900 25900 H(3)

Analysis of thermal vibration parameters

The vibrational motion of rigid-body molecules which do not possess a centre of symmetry may be described in terms of three tensors \mathbf{T} , $\boldsymbol{\omega}$ and \mathbf{S} . Schomaker & Trueblood (1968) have introduced the cross tensor \mathbf{S} which accounts for correlation of the translational and librational motions described by the tensors \mathbf{T} and $\boldsymbol{\omega}$ first used by Cruickshank (1965). The elements of these tensors (and their standard deviations) may be derived from a least-squares fit of the atomic b_{ij} values obtained from the anisotropic full-matrix structure refinement. The program *MGTL* of Gantzel, Trueblood *et al.* (ACA program No. 1, 1971), was adapted for the ICL 1909 computer and used for these calculations.

Fig.2. Packing of the structure, viewed along the a axis.

Table 2. b_{ij} values for C, N, O and F atoms exp $\{-10^{-5}(h^2b_{11}+k^2b_{22}+l^2b_{33}+hkb_{12}+hlb_{13}+klb_{23})\}$, with standard deviations in parentheses

	<i>b</i> 11	b22	b33	<i>b</i> ₁₂	b ₁₃	b23
C(1)	4111 (313)	312 (27)	1399 (141)	- 335 (150)	2970 (362)	- 298 (102)
C(1)	2741 (268)	232(25)	1266 (136)	-47 (122)	2360 (333)	-43 (87)
N (2)	4051 (291)	496 (30)	2245 (149)	- 792 (137)	4688 (362)	- 879 (99)
Ô	4313 (251)	512 (26)	2652 (134)	-812 (117)	5247 (322)	- 1049 (90)
Ĕ(1)	11350 (376)	895 (33)	3333 (137)	- 2932 (169)	10919 (412)	-1872 (102)
F(2)	4799 (258)	940 (34)	3024 (139)	- 525 (142)	2186 (319)	-1551 (107)

Table 3. Values of hkl and observed and calculated structure factors ($\times 10^2$)

Ħ	ĸ	L	PO PC	н к	L	FO FC	H	ĸ	LFI	D PC	H	ĸ	L	FO	FC	н	к	L	FO	FC.	H	к	l. FO	FC:	H	к	L PC	e en	Ħ	к	L	FO	FC.
0	0	24	295 4312	0 14	0	335 434	!	6	3 62	603	11	15	-1	487	511	.`	6	-7	141	105	3	5	3 173	201	3.	9 •	6 361	366	4	8	~?	456	444
8	×	2	622 674	0 16	2	290 359		6		2 247	5	š		3030	3240	5	4	ĩ	503	474	2	5.	-2 612	576		0	0 201	191		8	•3	540	328
ň	÷.	ň a	7303 1007	1 10	Å	1352 1265		6	3 50	7 484	5	Ň	2	1007	1025	5	+	;	113	1005	1	5	3 755	744		õ .	1 261	260	- 1	8	-2	010	513
ŏ	÷	24	527 4934	iŏ	2	157 43		6	4 58	573	5	ň	- Ă	267	258	2	7	_i	1693	1608	ž		4 377	371		ŏ -	2 041	372	- 2	A	-7	173	19
õ	i	3	296 222	iŏ	- ŭ	1164 118	i	6	5 19	277	ž	ĭ	0	456	631	2	Ż	-2	471	339	ž	2.	5 1 305	1210	31	ŏ.	3 17	199	-	ă		251	340
ō	i i	ã.	980 850	10	-2	975 1128	- i	6 .	6 72	698	2	i	- ĩ -	1809	2829	5	7	-3	1476	1428	ã	2.	6 1006	1090	- ii	0	4 64	700	4	ő		600	640
Ō	i	5	193 202	1 0	-4	1148 1008	i	7	0 154	1321	2	i	2	1022	1199	2	7	-4	1384	1369	3	2.	7 361	405	31	ο.	5 644	666	- 4	ó	2	314	330
0	1	6	141 199	1 0	-6	1274 1187	i	Ż	1 67	5 577	2	i i	3	1242	1238	2	7	-6	183	246	3	2.	9 173	210	31	1.	é 17	81	4	á	-5	314	355
0	2	0	219 117	1 1	0	2060 2912	1	7	2 201	3 1874	5	1	4	613	588	5	7	•7	424	454	3	3	0 632	653	31	1.	3 770	916	4	ģ.	-6	393	335
0	2	11	857 1497	1 1	1	802 819	1	7	3 17.	3 182	2	1	-1 1	1368 .	1612	5	3	0	409	358	3	3	1 692	616	31	1 -	4 471	464	- 4	10	-1	377	345
0	5	53	586 3000	11	5	125 150	1	7 -	1 67	5 661	5	1	-21	1620	1773	2	8	1	1604	1447	3	3	P 597	559	31	1 -	5 314	355	4	10	-2	267	293
0	2	35	979 3083	11	3	849 878		7 •	5 558	2061	2	1	-3	928	847	2	8	5	660	635	3	3.	1 644	569	3 1	÷.	3 597	593	- 4	10	-3	566	519
0	2	۰.	915 934	11	÷.	723 760		1.	·3 37	[293	2	1	-	1900	1300		0	د	.121	149	3	<u>،</u> ۱	2 330	332	31	5 4	4 94	45	4	10	-4	424	416
8	2	2'	325 405		-1	23/5 2051		1.	5	2 332	2	;	2	440	442	ଁ ୨	3		487	1305	3	<u>،</u>	5 722	735	31	3.	2 125	115	4	10	-5	251	257
Ň	5	ĭ.4	051 5258			2505 2270		4 3	6 20	484	5	:	-7	157	166	5	š	2	565	632	3		5 1205	1277	21	<u>،</u>	., <u>,</u> ,	90	. 1		-3	591	200
ň	1	51	500 1310			157 126		4 -	1 25	101	ົ່	5	- i - i	1258	1487	2	8		1132	1169	1	1	6 14 04	1415	1	ĩ	0 676	667	1	12		222	139
ō	ĩ	ĩi	934 1864	- i i	-5	833 672	i	8	2 17	87	2	2	ĭ	409	584	þ	8	-ś	393	407	ž	ž,	7 1132	1104	4	i .	3 507	571	6	õ	21	667	1812
ō	ž.	4	890 830	- i i	-7	346 347	i	8	3 69	656	2	2	2	755	662	2	9	0	723	749	ž	4	0 471	500	4	i -	2 75	777	ś	ŏ	- A	896	930
Ó.	3	5	567 583	1 2	ò	1494 1879	1	8	4 39	3 389	ž	2	3	1667	1730	5	9	1	1242	1.236	3	4	1 707	722	4	i.	3 202	1935	ś	ĭ	•1	519	440
0	3	6	180 232	12	t	660 563	1	8 -	1 152	5 1432	2	5	4	566	493	2	9	5	534	512	3	4	2 173	167	4	۱.	5 849	900	ŝ	1	-3	409	414
0	4	05	327 5713	15	3	409 415	1	8.	-2 103	3 995	5	5	-1 2	21:36 :	2295	s	Э	3	456	399	3	4 •	1 865	869	4	1 .	6 1132	1167	5	1	-4 1	400 1	1271
0	4	17	314 7295	1 5	4	298 315	1	8 -	3 110	94	2	S.	-2	1966	2128	2	9	-!	377	414	3	4 •	2 267	368	4	1 •	7 40	405	5	1	-5	314	326
0	•	5 5	005 2202	1 2	- 5	314 309	!	8 -	4 10	5 175	5	2	-3 2	2202 :	2063	2	3	-1	204	257	3	4 •	3 1211	1160	4	2	0 110	66	- 5	1	-6	79	99
8	•	3	901 141	1 2	-1-2	2752 3224		8 .	2 10	384	2	5	-2	301	290	5	2	-2	1/3	212	5	•	4 739	701	4	5.	1 72	735	5	1	-7	409	4.24
Ň	7	2	103 134	1 2		440 278		8	0 79	696	Š	ŝ	-7	1227	319	5	10	-0	220	261	2		6 1404	197	2	Ś. •	2 990	907	2	2	-)	613	549
ŏ	1	6	386 412	12		110 150		ő	1 128	1167	5	â	6	2202	1082		10	ĭ	424	367	2		7 235	230	2	5	J 434	258	2	Ś	Ξ.	290	479
õ	5	ĩ a	076 2040	1 2	-5	566 523	i	á	2 34	5 361	5	۲.	ĩ	1872	1702	5	10	ż	497	500	ă.		8 377	406	4	5	5 20	5,00		5	2'	580 580	510
ō	ś	2 2	205 2057	1 2	-ć	361 351	i	ģ.	3 39	345	2	ž	2	1305	1190	2	10	-1	437	457	ž	5	1 739	722	4	2	7 550	613	ś	5	-	303	373
0	5	3	141 220	1 2	-7	456 408	1	9	4 64	726	2	3	3	393	402	5	10	•?	267	228	3	Ś	2 503	153	4	3	0 534	578	ś	2	-6	146	338
0	5	4	90 65	13	0	2218 2006	1	9.	1 23	5 154	5	3	-Ā	456	418	5	10	-3	928	1022	3	5.	1 550	490	4	3	1 314	241	Ś	2	•7	440	421
0	5	5	245 176	13	1	346 355	1	9 •	2 44	371	5	3	+1 0	1541	1420	2	10	-4	298	311	3	5.	2 613	684	4	3.	1 770	792	5	3	÷	629	674
0	5	6	412 525	1 3	2	1557 1351	1	9 -	3 40	9 403	2	3	•5.1	1714 3	2044	2	10	-5	125	134	3	5.	3 582	581	4	3 •	2 1035	3 1081	5	3	-3	644	578
0	è	<u>.</u>	670 701	1 3	3	1038 1014	1	9 •	4 105	3 958	5	3	-3 2	2674	2598	5		0	534	445	3	5.	4 1255	1256	4	3 -	3 991	922	5	3	-4	739	731
8	2	11	057 910	13	- 1	125 141	1.	.9 •	5 53	521	2	3	-4	220	226	5			409	428	3	5	5 1431	1400	4	3 -	4 1573	1634	5	3	•5	644	592
~	č	~ ~	200 2200		?	340 340		10	0 44	434	2	3	•?	207	312	2		-	201	101	3	2.	0 393	412	÷.	3.	5 314	342	5	3	-6	562	557
ň	ĸ	2.	257 1108			2022 2297		10	1 37	(302	2	5	-2	409	212	2		<u> </u>	802	717	3	2.	0 507	223	÷.	· ·	0 943	1020	2	3	•7	235	247
ŏ	š	Ξ.	128 20			1368 1935	- i -	10	2 45	200	Ś	2	- , ,	2020	108	5			283	278	2	Ğ.	2 157	200	- 2	2	1 202	30	2		렸	173	254
ō	6	6	386 476		-5	314 214	- i -	10 -	1 29	1 125	5	7	1	1384	1340	2	12	ő	519	510	2	š.	1 770	703	1	1.	1 157	112	2	2		612	660
ō	7	11	418 1353	i 3	-1	770 672		10	3 95	9 921	2	τ.	2	865	873	2	12	ī	550	558	ž	6	2 110	93		1	3 26	276	ś	1	31	604 1	452
0	7	21	805 1702	14	ò	1289 1178	1	10 -	4 28	296	2	4	3	487	484	5	12	-1	1006	984	3	6.	3 1022	1109	4	÷ -	4 83	643	ś	Ā.	-6	770	770
0	7	31	728 1605	14	1	707 629	1	10 -	5 23	5 275	2	4	-1	723	670	2	12	-2	173	190	3	6.	4 141	120	4	4 -	5 723	618	ŝ	4	•7	912	843
0	7	4	257 275	14	2	94 74	1	11	0 26	7 243	2	4	-2	975	1094	5	15	-4	204	241	3	6.	5 786	772	4	4 -	6 456	389	5	5	-2	487	401
o o	7	2	490 515	14	3	1179 1060	1	11	1 83	3 821	5	4	-3	896	798	5	12	-5	173	208	3	6.	6 1038	1103	4	4 -	371	434	5	5	-3	503	513
8	ã	02	0 (0 2231		- 1	044 500	- 10		2 73	9 682	5	4	-	1195	1108	5	13	-1	301	310	3	7	0 267	233	4	5	1 70	103	5	5	-4	314	595
×.	Ă	5,	102 42	- 1 2	_?	1085 019			3	2 1022	2	2	-24	2062	2504	2			503	163	3	4	1 301	353		2.	2 625	022	5	5	->	550	502
×.	Ă	2	428 217	- 1 2		1005 910			1 122	1220	2	2	-2	090	004	2	13	-3	127	173	3		2 203	315		2 -	3 42	408	2	5	-0	220	253
ŏ	ă	4	515 472	- i I		1620 1590	- i -		3 12	67	5	č	~ <u>(</u>)	1894	1601	2	14	3	04	325	3		5 1227	1019	1	2 -	5 1101	1027	2	2	-1	866	110
ō	8	ŝ.	309 293	- i 4		487 122	- i -		- 26	7 200	5	έ.	5	2406	2150	3	0	-	1698	1720	1		6 818	852	1	ξ.	6 204	257	2	ĕ		157	161
ō	9	í I	212 1236	- i 4	-5	503 486	- i -	12	0 58	547	5	ś	3	660	577	จั	õ	÷.	975	1043	ž	7	7 346	373	-	ί.	7 283	260	ś	ĕ	-	Aio	807
0	9	4	128 62	14	-Ġ	739 667	- i ·	12	1 39	3 360	2	ś	á.	330	264	3	ò	-4	440	421	ž	Ġ.	0 613	579	-	6 -	0 17	159	ś	6	6	330	336
0	9	5	193 333	14	-7	314 298	1.1	12	2 14	144	2	5	-1	928	852	3	0	-6	2092	2087	3	8	1 361	337	4	6	1 173	175	ś	6	•7	550	451
0 1	0	0	219 211	15	0	1069 952	1.1	12 .	1 18	3 165	5	5	→ 3	802	774	3	1	0	298	197	3	8	2 157	152	4	6 .	2 1321	1269	ŝ	7	÷غ	220	228
0 1	0	1	348 376	1 5	1	1997 1773	1.1	12 -	-2 23	5 241	2	5	-4	975	929	3	1	1	157	515	3	9.	1 283	283	4	6.	4 125	67	5	7	•3 °	739	630
0	10	3	748 890	1 5	3	092 655	1	12 •	3 51	9 499	5	5	•5	377	297	3	1	5	755	769	3	в •	2 235	195	4	6.	5 534	538	5	7	-4	519	434
2		2	540 432		- 1	440 318	- !	12 •	4 17	3 137	5	2	-6	566	620	3	1	3	296	416	3	÷ ۲	975	990	4	<u>ه</u> -	6 125	345	5	7	•5 ·	613	594
0		?	541 640	12	2	660 76	!	13	0 00	067	5	2	•7	503	561	3		-1	710	769	3		2 1211	1212		•	7 393	495	5	7	-0	298	260
ŏ		5	926 1050	12		2013 2020		13 -	< 56 1 14	3 407	2	8		1521	1304	3	÷		2611	(25	3	5 -	157 7 Boo	873	1	4 -	0 220	187	2	8	-3	203	250
ŏ	ii -	3	361 379	15		755 764	i	13	2 12	5 97	5	ĕ	2	1085	1020	2	i	-5	409	241	1	Ğ.	0 17	160	1	÷ -	2 Q	140	2	ă	3	008	844
ō	n –	ă.	554 603	15	-	1400 1210	i	13	3 39	5 448	2	ĕ	-1	629	505	รั	i	-6	393	428	ž	é	1 314	352	4	i -	3 487	497	ś	8	٠á	609	397
0	12	01	457 1429	15	~5	125 169	i	13	- 12	5 158	2	6	÷2	1368	1703	ź	1	•7	1431	1465	ž	9.	1 487	443	4	7 -	4 1038	1054	ś	ğ.	-i -i	267	244
0	12	1	361 393	1 5	-6	377 369	1	14	0 17	3 162	2	6	-3	975	1113	3	5	0	487	455	3	9.	2 141	101	4	7 -	5 707	762	Ś	9	•5	188	173
0	15	5	107 105	1 6	0	1022 802	1	14	1 29	3 329	5	6	-4	503	464	3	5	1	371	404	3	9 •	3 409	452	4	7 -	6 157	155	6	5	-4	1 10	117
õ.	12	4	04 85	1 6	1	566 489		14 .	-1 20	241	2	6	-5	157	149	3	5	2	141	155	3	9.	5 865	834	4	7 -	7 377	464	6	5	-5	125	178
U	د ا	3	110 98	1 0	2	424 425	1	14 •	-2 45	6 485	2	6	-6	361	393																		

Values of the tensors T, ω and S (and their standard deviations) are given in Tables 4, 5 and 6; in Table 7 are the magnitudes of the principal axes of ω and their direction cosines relative to orthogonal axes *a*, *b*, *c*^{*}.

Table 4. Rigid body translation tensor. Elements $(T_{ij} \times 10^4)$ of the mean square tensor, in Å², and their standard deviations

Table 5. Rigid body librational tensor. Elements $(\omega_{ij} \times 10^4)$ of the mean square tensor, in rad², and their standard deviations

Table 6. The cross tensor S. Elements $(S_{ij} \times 10^4)$, in rad.Å, and their standard deviations

13 (16)	-73 (7)	39 (9)
123 (8)	-8(13)	-2(7)
74 (13)	7 (9)	-5(33)

 Table 7. Rigid body librational tensor. (a) Principal axes

 (root mean square displacement in degrees). (b) Direction cosines relative to orthogonal axes a, b, c*

(a)		<i>(b)</i>	
11.73	0.0747	-0.6500	-0.7563
3.69	0.2631	0.7446	-0.6135
2 ·66	0.9627	-0.1207	0.2245

A useful check of the fit of the rigid-body motion is to compare values of the U_{ij} 's for each atom calculated from the rigid-body tensors **T**, ω and **S** with those derived directly from the b_{ij} values of the structure refinement. A comparison of these two sets of U_{ij} is made in Table 8; the differences may be compared with a mean σU_{ij} of 23×10^{-4} Å² obtained from b_{ij} e.s.d.'s in Table 2. The agreement indicates that the rigid-body model of the thermal motion is a reasonable approximation. Libration corrections to the position parameters within one molecule have therefore been made and the corrected coordinates are given in Table 9. It will be noted from Table 7 that there is an exceptionally large amplitude of libration (r.m.s. amplitude 11.7°) about the first principal axis of ω ; the direction

Table 8. Values of $(U_{ij} \times 10^4)$ in Å², (a) from b_{ij} values, (b) from rigid body model

	U	11	U	22	U	33	L	J ₁₂	U	U ₁₃	l l	U ₂₃
	<i>(a)</i>	(<i>b</i>)	<i>(a)</i>	(<i>b</i>)	(<i>a</i>)	(<i>b</i>)	<i>(a)</i>	(<i>b</i>)	(a)	<i>(b)</i>	<i>(a)</i>	(<i>b</i>)
C(1)	348	351	259	311	216	251	-14	-18	43	63	- 53	- 70
C(2)	221	222	193	154	196	169	-2	19	15	31	- 8	36
N	226	230	412	420	347	369	- 8	-23	63	48	-157	-163
0	237	220	426	441	410	444	13	10	54	59	-188	- 181
F(1)	601	610	744	728	515	499	-224	-227	379	354	-335	- 337
F(2)	686	686	781	761	467	419	132	136	-212	-213	- 278	- 295

of this axis is almost the same as that of the molecular C(1)-C(2) bond (direction cosines 0.109, -0.642, -0.757).

Table 9. Libration corrected atomic coordinates for C, N, O and F atoms × 10⁵ (referred to same origin and and axes as Table 2)

	x	У	Ζ
C(1)	35849	17825	50485
C(2)	21393	10136	29238
N	- 8091	6117	20349
0	37359	8586	21563
F(1)	23636	15561	62499
F(2)	69368	16587	66658

Description of the structure

Difluoroacetamide is typical of most primary amide crystals in forming centrosymmetric hydrogen-bonded pairs. These pairs form further hydrogen bonds sideways to similar pairs related by the **a** translation. This arrangement, which involves maximum hydrogen bonding, gives rise to ribbons of two molecules width, extending parallel to **a**. Leiserowitz & Schmidt (1969) have designated this general type amongst amide structures as translation packing. Neighbouring molecular ribbons in difluoroacetamide are related by the screw axis parallel to **b** and perpendicular to the ribbon length, to give the 'staggered' packing illustrated in Fig. 2. The inclination of the mean hydrogen bonding plane to **b** is 50°.

The bond distances and angles within the molecule are given in Table 10. The carboamide group is effectively planar, the equation of the mean plane and the deviations of the carbon, nitrogen and oxygen atoms from it are given in Table 11. The torsion angles involving the fluorine atoms are 156° [F(1)C(2)C(1)O] and 39° [F(2)C(2)C(1)O] respectively. In Table 12 are given distances and angles involved in the hydrogenbonding system.

Table 10. Bond distances and angles

(a) Intramolecular distances (after libration correction) and their standard deviations, where determined.

C(1) - C(2)	1·543 (7) Å	C(1)-H(3)	1∙06 Å
C(1) - F(1)	1.361 (9)	N - H(1)	0.85
C(1) - F(2)	1.364 (9)	N - H(2)	0.82
C(2)–N	1.334 (8)		
C(2)–O	1.247 (8)		

Table 10 (cont.)

(b) Bond angles (after libration correction) and their standard deviations, where determined.

C(2)-C(1)-F(1)	109.5 (5)°	C(2)-C(1)-H(3)	116°
C(2)-C(1)-F(2)	109.6 (5)	H(3)-C(1)-F(1)	108
F(1)-C(1)-F(2)	106.7 (5)	H(3)-C(1)-F(2)	106
C(1)-C(2)-N	115.2 (5)	C(2)-N-H(1)	118
C(1)-C(2)-O	118.0 (5)	C(2)-N-H ₂	119
C(1)-C(2)-O	118·0 (5)	$C(2)-N-H_2$	119
OC(2)-N	126·7 (4)	H(2)-N-H_1	123

Table 11. Deviations of atoms from the 'best' plane defined by C(1), C(2), O, N (referred to orthogonal axes), Å

-	0.0868x + 0.7638y	-0.6396z = -0	0.0120
C(1)	0.0038	F(1)	-0·5421
C(2)	-0.0139	F(2)	-0.7770
0	0.0053	H(1)	-0.101
N	0.0048	H(2)	0.094
		H(3)	0.953

Table 12. Hydrogen bonded distances and angles and their standard deviations (where obtained). The numerals in parentheses in the angle and distance descriptions refer to molecules related as follows: (i) x, y, z (ii) $\bar{x}, \bar{y}, \bar{z}$ (iii) 1 + x, y, z

Distance (Å)			
$N^{i} \cdots O^{ii}$	3.011 (6)	$H(2^i) \cdots O^{ii}$	2.20
$N^{iii} \cdots O^i$	2.924 (9)	$O^i \cdots H(1^{iii})$	2.20
Angle (°)			
$N^{iii}-H(1^{iii})-O^{i}$	141	$C(2^{i})-O^{i}-H(2^{i})$	120
$N^{i}-H(2^{i})-O^{ii}$	169	$C(2^i)-O^i-H(1^{iii})$	150

Discussion of the structure

(a) Molecular dimensions and conformation

The length of the carbon-carbon bond (1.543 Å) found in this compound is slightly greater than that found in acetamide (1.530 Å: Denne & Small, 1971) or monofluoroacetamide (1.533 Å: Hughes & Small, 1962). There are no other reported values of the carbon-carbon bond length linking a $-CHF_2$ group to an sp^2 -hybridized carbon atom, but the length found in this determination is greater than that (1.51 Å) usually expected between sp^3 and sp^2 hybridized carbon atoms. Similar lengthened carbon-carbon bonds have also been found in the trifluoroacetate ion, 1.542 Å in

ammonium trifluoroacetate (Cruickshank, Jones & Walker, 1964) and 1.541 Å in potassium hydrogen bis trifluoroacetate (MacDonald, Speakman & Hadži, 1972).

The C–O and C–N bond lengths are within the range of values previously reported in other primary amide structures. The two C–F bonds, which are equal in length within the limits of error of this work, are significantly shorter than that found in monofluoroacetamide (1.406 Å) but larger than that found in ammonium trifluoroacetate, 1.346 Å (mean), and in potassium hydrogen bis trifluoroacetate, 1.326 Å (mean). A comparable progressive decrease in C–F distance along the series $-CH_2F$, $-CHF_2$, $-CF_3$ has previously been noted in simple gas-phase molecules (Bent, 1960).

The conformations of the fluorinated methyl groups relative to the amide group differ considerably between monofluoroacetamide and difluoroacetamide. In the former, the conformation is such that the fluorine atom 'eclipses' the amide NH₂ group. In difluoroacetamide, the two fluorine atoms are roughly equidistant from the carbo-amide plane and on the same side, as the torsion angles show. This suggests that in difluoroacetamide repulsion between the whole amide group and the -CHF₂ group is minimized to give the 'staggered' conformation, whereas in monofluoroacetamide repulsion between the oxygen atom of the amide group and the fluorine atom of the -CH₂F group is predominant. The difference may arise from the greater electronegativity of the single fluorine atom in the mono-substituted -CH₂F group compared with the two fluorine atoms in the group -CHF₂. Is is of interest to note that the shortest intramolecular $F \cdots H$ (amide) distances in these two structures do not differ significantly (2.30 Å in monofluoroacetamide and 2.44 Å in difluoroacetamide). These values may be compared with the sum of the van der Waals radii (Bondi, 1964), 2.60 Å. The shortest intermolecular distance between hydrogen and fluorine atoms in this structure is 2.40 Å.

(b) Hydrogen bonding

Hydrogen-bonded distances and angles fall into the general pattern found in primary amide structures which involve translation packing. In particular, the hydrogen bond between centrosymmetrically related molecules is more nearly linear $(N-H\cdots O$ angle 169°) than the bond between a-translation-related molecules $(N-H\cdots O$ angle 141°). The mean planes of the amide groups of pairs of molecules hydrogen bonded across a centre of symmetry are separated by only 0.024 Å and the mean inclination of each amide group to a is 5°.

We are indebted to Dr B. M. Bracher who supplied a copy of the program FMLS and to Professor K. N. Trueblood for the program MGTL. We are grateful to Dr R. E. Cobbledick who adapted both of these programs to the ICL 1909 computer.

References

- BENT, H. (1960). J. Chem. Phys. 32, 1582.
- BONDI, A. (1964). J. Phys. Chem. 68, 441.
- BRACHER, B. H. & SMALL, R. W. H. (1967). Acta Cryst. 23, 410.
- BRACHER, B. H. & TAYLOR, R. I. (1967). U.K.A.E.A. Research Report A.E.R.E.-5478.
- CRUICKSHANK, D. W. J. (1956). Acta Cryst. 9, 754.
- CRUICKSHANK, D. W. J., JONES, D. W. & WALKER, J. (1964). J. Chem. Soc. p. 1303.
- DENNE, W. E. & SMALL, R. W. H. (1971). Acta Cryst. B27, 1094.

HUGHES, D. O. & SMALL, R. W. H. (1972). Acta Cryst. 15,933.

International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

- LEISEROWITZ, L. & SCHMIDT, G. M. J. (1969). J. Chem. Soc. (A), p. 2372.
- MACDONALD, A. L., SPEAKMAN, J. C. & HADŽI, D. (1972). J. Chem. Soc. In the press.
- SCHOMAKER, V. & TRUEBLOOD, K. N. (1968). Acta Cryst. B24, 63.
- SMALL, R. W. H. & TRAVERS, S. (1961). J. Sci. Instrum. 38, 205.
- WILSON, A. J. C. (1942). Nature, Lond. 150, 152.